Research Blog: Google at NIPS 2017

This week, Long Beach, California hosts the 31st annual Conference on Neural Information Processing Systems (NIPS 2017), a machine learning and computational neuroscience conference that includes invited talks, demonstrations and presentations of some of the latest in machine learning research. Google will have a strong presence at NIPS 2017, with over 450 Googlers attending to contribute to, and learn from, the broader academic research community via technical talks and posters, workshops, competitions and tutorials.

Google is at the forefront of machine learning, actively exploring virtually all aspects of the field from classical algorithms to deep learning and more. Focusing on both theory and application, much of our work on language understanding, speech, translation, visual processing, and prediction relies on state-of-the-art techniques that push the boundaries of what is possible. In all of those tasks and many others, we develop learning approaches to understand and generalize, providing us with new ways of looking at old problems and helping transform how we work and live.

If you are attending NIPS 2017, we hope you’ll stop by our booth and chat with our researchers about the projects and opportunities at Google that go into solving interesting problems for billions of people, and to see demonstrations of some of the exciting research we pursue. You can also learn more about our work being presented in the list below (Googlers highlighted in blue).

Google is a Platinum Sponsor of NIPS 2017.

Organizing Committee
Program Chair: Samy Bengio
Senior Area Chairs include: Corinna Cortes, Dale Schuurmans, Hugo Larochelle
Area Chairs include: Afshin Rostamizadeh, Amir Globerson, Been Kim, D. Sculley, Dumitru Erhan, Gal Chechik, Hartmut Neven, Honglak Lee, Ian Goodfellow, Jasper Snoek, John Wright, Jon Shlens, Kun Zhang, Lihong Li, Maya Gupta, Moritz Hardt, Navdeep Jaitly, Ryan Adams, Sally Goldman, Sanjiv Kumar, Surya Ganguli, Tara Sainath, Umar Syed, Viren Jain, Vitaly Kuznetsov

Invited Talk
Powering the next 100 years
John Platt

Accepted Papers
A Meta-Learning Perspective on Cold-Start Recommendations for Items
Manasi Vartak, Hugo Larochelle, Arvind Thiagarajan

AdaGAN: Boosting Generative Models
Ilya Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, Bernhard Schölkopf

Deep Lattice Networks and Partial Monotonic Functions
Seungil You, David Ding, Kevin Canini, Jan Pfeifer, Maya Gupta

From which world is your graph
Cheng Li, Varun Kanade, Felix MF Wong, Zhenming Liu

Hiding Images in Plain Sight: Deep Steganography
Shumeet Baluja

Improved Graph Laplacian via Geometric Self-Consistency
Dominique Joncas, Marina Meila, James McQueen

Model-Powered Conditional Independence Test
Rajat Sen, Ananda Theertha Suresh, Karthikeyan Shanmugam, Alexandros Dimakis, Sanjay Shakkottai

Nonlinear random matrix theory for deep learning
Jeffrey Pennington, Pratik Worah

Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice
Jeffrey Pennington, Samuel Schoenholz, Surya Ganguli

SGD Learns the Conjugate Kernel Class of the Network
Amit Daniely

SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability
Maithra Raghu, Justin Gilmer, Jason Yosinski, Jascha Sohl-Dickstein

Learning Hierarchical Information Flow with Recurrent Neural Modules
Danijar Hafner, Alexander Irpan, James Davidson, Nicolas Heess

Online Learning with Transductive Regret
Scott Yang, Mehryar Mohri

Acceleration and Averaging in Stochastic Descent Dynamics
Walid Krichene, Peter Bartlett

Parameter-Free Online Learning via Model Selection
Dylan J Foster, Satyen Kale, Mehryar Mohri, Karthik Sridharan

Dynamic Routing Between Capsules
Sara Sabour, Nicholas Frosst, Geoffrey E Hinton

Modulating early visual processing by language
Harm de Vries, Florian Strub, Jeremie Mary, Hugo Larochelle, Olivier Pietquin, Aaron C Courville

MarrNet: 3D Shape Reconstruction via 2.5D Sketches
Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman, Josh Tenenbaum

Affinity Clustering: Hierarchical Clustering at Scale
Mahsa Derakhshan, Soheil Behnezhad, Mohammadhossein Bateni, Vahab Mirrokni, MohammadTaghi Hajiaghayi, Silvio Lattanzi, Raimondas Kiveris

Asynchronous Parallel Coordinate Minimization for MAP Inference
Ofer Meshi, Alexander Schwing

Cold-Start Reinforcement Learning with Softmax Policy Gradient
Nan Ding, Radu Soricut

Filtering Variational Objectives
Chris J Maddison, Dieterich Lawson, George Tucker, Mohammad Norouzi, Nicolas Heess, Andriy Mnih, Yee Whye Teh, Arnaud Doucet

Multi-Armed Bandits with Metric Movement Costs
Tomer Koren, Roi Livni, Yishay Mansour

Multiscale Quantization for Fast Similarity Search
Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel Holtmann-Rice, David Simcha, Felix Yu

Reducing Reparameterization Gradient Variance
Andrew Miller, Nicholas Foti, Alexander D’Amour, Ryan Adams

Statistical Cost Sharing
Eric Balkanski, Umar Syed, Sergei Vassilvitskii

The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings
Krzysztof Choromanski, Mark Rowland, Adrian Weller

Value Prediction Network
Junhyuk Oh, Satinder Singh, Honglak Lee

REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker, Andriy Mnih, Chris J Maddison, Dieterich Lawson, Jascha Sohl-Dickstein

Approximation and Convergence Properties of Generative Adversarial Learning
Shuang Liu, Olivier Bousquet, Kamalika Chaudhuri

Attention is All you Need
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, Illia Polosukhin

PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan Huggins, Ryan Adams, Tamara Broderick

Repeated Inverse Reinforcement Learning
Kareem Amin, Nan Jiang, Satinder Singh

Fair Clustering Through Fairlets
Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii

Affine-Invariant Online Optimization and the Low-rank Experts Problem
Tomer Koren, Roi Livni

Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models
Sergey Ioffe

Bridging the Gap Between Value and Policy Based Reinforcement Learning
Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans

Discriminative State Space Models
Vitaly Kuznetsov, Mehryar Mohri

Dynamic Revenue Sharing
Santiago Balseiro, Max Lin, Vahab Mirrokni, Renato Leme, Song Zuo

Multi-view Matrix Factorization for Linear Dynamical System Estimation
Mahdi Karami, Martha White, Dale Schuurmans, Csaba Szepesvari

On Blackbox Backpropagation and Jacobian Sensing
Krzysztof Choromanski, Vikas Sindhwani

On the Consistency of Quick Shift
Heinrich Jiang

Revenue Optimization with Approximate Bid Predictions
Andres Munoz, Sergei Vassilvitskii

Shape and Material from Sound
Zhoutong Zhang, Qiujia Li, Zhengjia Huang, Jiajun Wu, Josh Tenenbaum, Bill Freeman

Learning to See Physics via Visual De-animation
Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, Josh Tenenbaum

Conference Demos
Electronic Screen Protector with Efficient and Robust Mobile Vision
Hee Jung Ryu, Florian Schroff

Magenta and deeplearn.js: Real-time Control of DeepGenerative Music Models in the Browser
Curtis Hawthorne, Ian Simon, Adam Roberts, Jesse Engel, Daniel Smilkov, Nikhil Thorat, Douglas Eck

6th Workshop on Automated Knowledge Base Construction (AKBC) 2017
Program Committee includes: Arvind Neelakanta
Authors include: Jiazhong Nie, Ni Lao

Acting and Interacting in the Real World: Challenges in Robot Learning
Invited Speakers include: Pierre Sermanet

Advances in Approximate Bayesian Inference
Panel moderator: Matthew D. Hoffman

Conversational AI — Today’s Practice and Tomorrow’s Potential
Invited Speakers include: Matthew Henderson, Dilek Hakkani-Tur
Organizers include: Larry Heck

Extreme Classification: Multi-class and Multi-label Learning in Extremely Large Label Spaces
Invited Speakers include: Ed Chi, Mehryar Mohri

Learning in the Presence of Strategic Behavior
Invited Speakers include: Mehryar Mohri
Presenters include: Andres Munoz Medina, Sebastien Lahaie, Sergei Vassilvitskii, Balasubramanian Sivan

Learning on Distributions, Functions, Graphs and Groups
Invited speakers include: Corinna Cortes

Machine Deception
Organizers include: Ian Goodfellow
Invited Speakers include: Jacob Buckman, Aurko Roy, Colin Raffel, Ian Goodfellow

Machine Learning and Computer Security
Invited Speakers include: Ian Goodfellow
Organizers include: Nicolas Papernot
Authors include: Jacob Buckman, Aurko Roy, Colin Raffel, Ian Goodfellow

Machine Learning for Creativity and Design
Keynote Speakers include: Ian Goodfellow
Organizers include: Doug Eck, David Ha

Machine Learning for Audio Signal Processing (ML4Audio)
Authors include: Aren Jansen, Manoj Plakal, Dan Ellis, Shawn Hershey, Channing Moore, Rif A. Saurous, Yuxuan Wang, RJ Skerry-Ryan, Ying Xiao, Daisy Stanton, Joel Shor, Eric Batternberg, Rob Clark

Machine Learning for Health (ML4H)
Organizers include: Jasper Snoek, Alex Wiltschko
Keynote: Fei-Fei Li

NIPS Time Series Workshop 2017
Organizers include: Vitaly Kuznetsov
Authors include: Brendan Jou

OPT 2017: Optimization for Machine Learning
Organizers include: Sashank Reddi

ML Systems Workshop
Invited Speakers include: Rajat Monga, Alexander Mordvintsev, Chris Olah, Jeff Dean
Authors include: Alex Beutel, Tim Kraska, Ed H. Chi, D. Scully, Michael Terry

Aligned Artificial Intelligence
Invited Speakers include: Ian Goodfellow

Bayesian Deep Learning
Organizers include: Kevin Murphy
Invited speakers include: Nal Kalchbrenner, Matthew D. Hoffman

BigNeuro 2017
Invited speakers include: Viren Jain

Cognitively Informed Artificial Intelligence: Insights From Natural Intelligence
Authors include: Jiazhong Nie, Ni Lao

Deep Learning At Supercomputer Scale
Organizers include: Erich Elsen, Zak Stone, Brennan Saeta, Danijar Haffner

Deep Learning: Bridging Theory and Practice
Invited Speakers include: Ian Goodfellow

Interpreting, Explaining and Visualizing Deep Learning
Invited Speakers include: Been Kim, Honglak Lee
Authors include: Pieter Kinderman, Sara Hooker, Dumitru Erhan, Been Kim

Learning Disentangled Features: from Perception to Control
Organizers include: Honglak Lee
Authors include: Jasmine Hsu, Arkanath Pathak, Abhinav Gupta, James Davidson, Honglak Lee

Learning with Limited Labeled Data: Weak Supervision and Beyond
Invited Speakers include: Ian Goodfellow

Machine Learning on the Phone and other Consumer Devices
Invited Speakers include: Rajat Monga
Organizers include: Hrishikesh Aradhye
Authors include: Suyog Gupta, Sujith Ravi

Optimal Transport and Machine Learning
Organizers include: Olivier Bousquet

The future of gradient-based machine learning software & techniques
Organizers include: Alex Wiltschko, Bart van Merriënboer

Workshop on Meta-Learning
Organizers include: Hugo Larochelle
Panelists include: Samy Bengio
Authors include: Aliaksei Severyn, Sascha Rothe

Deep Reinforcement Learning Symposium
Authors include: Benjamin Eysenbach, Shane Gu, Julian Ibarz, Sergey Levine

Interpretable Machine Learning
Authors include: Minmin Chen

Organizers include: Quoc V Le

Adversarial Attacks and Defences
Organizers include: Alexey Kurakin, Ian Goodfellow, Samy Bengio

Competition IV: Classifying Clinically Actionable Genetic Mutations
Organizers include: Wendy Kan

Fairness in Machine Learning
Solon Barocas, Moritz Hardt